

0040-4020(94)E0253-P

GLYCOSYLATION USING GLYCOSYL PHOSPHITE AS A GLYCOSYL DONOR

Yutaka Watanabe,* Chikara Nakamoto, Takashi Yamamoto, and Shoichiro Ozaki Department of Applied Chemistry, Faculty of Engineering, Ehime University, Matsuyama 790, Japan

Abstract: Glycosylation using glycosyl phosphites as glycosyl donors in the presence of a Lewis acid such as ZnCl2 or ZnCl2-AgClO4 has afforded the glycosides including sialoglycosides in good yields.

A phosphite forms the phosphonium salt by the interaction with a Lewis acid owing to its Lewis basic character. We have utilized this property in transesterification of a trialkyl phosphite in the presence of $1H$ tetrazole.¹ A readily oxidizable property of the phosphite was also utilized for the phosphorylation via phosphonium salt which was in situ formed by the action of pyridinium hydrobromide perbromide.² When a glycosyl phosphite is transformed to the phosphonium salt, the resulting phosphoniooxy group acts as a strong leaving group in the nucleophilic substitution at the anomeric carbon center. Based on the consideration, we have investigated an efficient glycosylation method and planed to synthesize glycosyl phosphatidyl inositols (GPI) .³

In recent years, a number of methodologies for glycosylation have appeared, which involve various types of glycosyl donors and their combination with activators.⁴ However, glycosyl phosphite as a glycosyl donor has not appeared until 1992 while P(V) derivatives have been actively investigated.⁵ Thus, Schmidt⁶ and Wong⁷ groups have revealed at the same period that sialyl diethyl or dibenzyl phosphite is a very useful reagent for sialoglycoside synthesis where trimethylsilyl trifluoromethanesulfonate (TMSOTf) was employed to activate the phosphite. We

also communicated the identical glycosylation method using glucosyl, mannosyl. and galactosyl dimethyl phosphites and activators such as $ZnCl_2$ and $ZnCl_2$ -AgClO₄ independently later.⁸ Here we report our results in full detail and compare the efficiency of activators.

Results and Discussion

Synthesis of phosphites. According to the phosphoramidite approach.9 1-hydroxyl sugars such as 2.3,4,6-tetra-O-benzyl-D-glucopyranose, -D-mannopyranose, and -D-galactopyranose were transformed smoothly and quantitatively to the corresponding phosphites 1 by the reaction with 1.3 molar equivalent each of dimethyl N, N-diethylphosphoramidite or other amidites and 1H-tetrazole in CH₂Cl₂ at room temperature while 1.7 to 2.3 molar equivalents of the reagents were required to obtain sterically hindered sialyl dimethyl phosphite **1D** in around 93% yield. Both groups of Schmidt⁶ and Wong⁷ reported to yield diethyl and dibenzyl 2-sialyl phosphite only with β -configuration respectively when the phosphitylation was conducted in THF in place of CH2Cl2. Phosphitylation has been generally carried out by using excess of tetrazole as Wong et al. used 2 fold excess of tetrazole toward phosphoramdites in the reaction mentioned above. However, we point out that such an excess amount of tetrazole is not necessary and rather might cause a side reaction. In fact, we observed the reaction of I-glucosyl phosphite 1A with tetrazole resulting in the formation of N -(glucosyl)tetrazoie.

Scheme 1. Synthesis of glycosyl phosphites

The resultant α/β anomeric mixture, the ratio of which was determined by ¹H- and ³¹P NMR was used after a general work-up procedure without purification while the phosphites are purified on silica gel using an eluting solution containing 2-3% of triethylamine if necessary. These phosphites can be stored in a desiccator under an inert atmosphere.

Glycosylation using glycosyl phosphites. A Lewis acid to promote the reaction of glycosyl phosphite with an alcohol was first explored by the use of glucopyranosyl dimethyl phosphite **1A.** As shown in Table 1, various Lewis acids were effective in the case of 3-phenylpropanol (2a) and cyclohexanol (2b). Glycosylation of 4-O-unprotected methyl glucopyranoside 2g was effected by using $ZnCl_2$ -AgClO4. These results suggested that

ZnCl2 or ZnCl2-AgClO4 was the choice of promoter. In particular, the latter mixed reagent had a strong ability to promote the reaction, while the anomeric ratio was about 1: 1 in cases of simple alcohols. However, the quantity of α -glycosides derived from alcohols with low reactivity such as 2g (run 23 and 24 in Table 1) and inositol derivative 2h (run 7 in Table 7) increased. Use of the phosphite in excess gave generally better results than that of excess of alcohol (compare entries 7 and 8, and 17 and 18 in Table 1). Changing the ratio of $ZnCl_2$ to $AgClO_4$ from 1: 1 to 1 : 2, the reaction rate increased and 20 mol% of ZnCl₂ 40 mol% of AgClO4 was sufficient as shown in Table 2. When using ZnC12 alone in the reaction of the unreactive 2g with **1A caused the** formation of a fairly amount of the 1-chloro derivative from the glycosyl donor as a by-product, addition of AgClO4 suppressed its formation completely. Therefore, AgCIC4 plays important roles in acceleration of the reaction and extrusion of the chloride ion in the reaction medium. The mixed reagent, ZnCl₂-AgClO₄ has not been used so far as an activator in the glycosylation. The combined reagent (92% yield of 3Aa. run 11 in Table 1) gave much better results than combination with AgGTf (60%).

 α Ethyldiisopropylamine (slightly excess in molar quantity based on the alcohol) added. β K₂CO₃ (quantity like in the footnote a) added. ^C Conducted at 1 °C. d For 13 h reacted. e For 3 h reacted. f For 1 h reacted.

Run	ROH	equiv and ratio ^{\boldsymbol{b}} of	Time	Yield	Ratio
		ZnCl ₂ & AgClO4		o,	α/β
	2d	1.1 & 2.2 $(1:2)$	$20 \,\mathrm{min}$	95	42/58
2	2d	1.1 & $0.5(2:1)$	20 min	98	44/56
3	2d	$0.2 \& 0.1 (2:1)$	18 h	99	43/57
4	2d	$0.2 \& 0.2 (1:1)$	12 h	100	42/58
5	2d	0.2 & 0.4(1:2)	1.5 h	100	43/57
6	22	$0.2 \& 0.4 (1:2)$	3.0 h	86	66/34

Table 2. Examination of molar ratio of ZnCl₂ and AgClO4^a

 \overline{a} An alcohol (0.75 equiv) was treated with the phosphite **1A** (1.0 equiv) in the presence of the catalyst and MS 4A at room temperature. b Shown in parentheses.

Table 3. Comparison of substituents on the phosphorus moiety

The effect of substituent in the phosphorus moiety was examined and the ethoxy and o -xylylenedioxy groups as well as the methoxy were found to give similar results as shown in Table 3. Diphenylphosphinite derivative which was prepared by using diphenylphosphinous chloride in place of the amidite in the presence of ethyldiisopropylamine gave also similar results, but the glycosyl donor was so unstable that its handling was difficult.

In order to know factors affecting the anomeric ratio in the glycosylation, effects of solvent and temperature were examined by using the model reaction of glucopyranosyl phosphite **1A** with some alcohols in the presence of N-iodosuccinimide (NIS)-trifluoromethanesulfonic acid (TfOH)¹⁰ and zinc catalysts. The results (Table 4) showed that as observed generally, ¹¹ ethyl ether gave α -anomer and acetonitrile β -one at room temperature predominantly. But interestingly, the reaction in the ether at lower temperatures increased the kinetic product, β -anomer, which in turn, predominated at around -70 °C (Table 5). This tendency was also observed in CH₂Cl₂.¹² Suzuki et al. reported similar temperature **effect.** l2

Run	Solvent	ROH	Activator	Yield	Ratio
		(equiv)	(equiv)	%	α/β
1	CH ₂ Cl ₂	2a(0.75)	ZnCl ₂ (1.1)	100	25/75
$\overline{2}$	CH ₂ Cl ₂	2c(0.75)	ZnCl ₂ (1.1)	99	31/69
3	Et2O	2c(0.75)	ZnCl ₂ -AgClO4	100	75/25
			$(1.1-2.2)$		
4	CH ₂ Cl ₂	2d(0.75)	ZnCl ₂ (1.1)	86	22/78
5	Et2O	2d(0.75)	ZnCl ₂ -AgClO ₄	94	84/16
			$(1.0-2.0)$		
6	CH ₂ Cl ₂	2a(1.0)	NIS-TIOH	86	55/45
			$(1.0-0.1)$		
7	Et ₂ O	2a(1.0)	NIS-TIOH	75	76/24
			$(1.0-0.1)$		
8	PhMe	2a(1.0)	NIS-TfOH	91	66/34
			$(1.0-0.1)$		
9	CH3CN	2a(1.0)	NIS-TfOH	64	25/75
			$(1.0-0.1)$		

Table 4. Solvent effecta

a The reaction with the phosphite IA (1.0 **equiv) was conducted in the presence of** MS 4A **at room temperature for 20 min.**

Run	Solvent	Temp.	Time	Yield	Ratio
				%	α/β
1	CH ₂ Cl ₂		20 min	86	
		r.t.			55/45
2	CH ₂ Cl ₂	3 °C	2.5h	82	50/50
3	CH ₂ Cl ₂	-21 °C	15 min	89	31/69
4	CH ₂ Cl ₂	-45 °C	20 min	85	20/80
5	CH ₂ Cl ₂	-68 °C	20 min	82	13/87
6	Eto	r.t.	20 min	75	76/24
7	Et ₂ O	1° C	20 min	83	70/30
8	Et2O	-21 \degree C	15 _{min}	79	55/45
9	Et2O	$-43 °C$	20 min	88	52/48
10	Et2O	$-72 °C$	20 min	89	27/73

Table 5. Temperature effect on the anomeric ratioa

(1 The reaction of **1A (1.0 equiv) with 2s (1.0 equiv) in the presence of** NIS-TfOH (1.0-0.1 equiv) and MS 4A was utilized for the purpose.

Keeping these results in mind, various giycosides were prepared by the use of benzyl-protected mannopyranosyi **1B** and gaiactopyranosyi phosphites 1C as well as 1A. The results are collected in Table 6 which includes some data appeared already in other tables. Glycosyi donors employed here were all benzyl protected derivatives. When dimethyl 2,3,4,6-tetra-O-acetyl-D-glucopyranosyl phosphite as an example of an acyl-protected glycosyl donor was reacted with 3-phenyipropanol **la** in the presence of ZnCi2-AgCiO4, the glycoside (30% yield) was accompanied by 41% of 3-phenylethyl acetate. On the other hand, 2-0-acetyl-3.4,6-tri-O-benzyl-Dmannopyranosyl phosphite acted as an effective glycosyi donor **in the presence of ZnCi2-AgCiO4 and NIS-TfOH. These results will be reported elsewhere in due course.**

Run		$\overline{\mathbf{2}}$	Activator	Product	Yield	Ratio
		(equiv.)	(equiv)		%	α/β
1	1 A	2c(0.75)	ZnCl ₂ (1.1)	3Ac	99	31/69
2	1 A	2d(0.75)	ZnCl ₂ (1.1)	3Ad	86	22/78
3	1A	2d(0.75)	ZnCl ₂ -AgClO ₄ (1.1-2.2)	3Ad	95	42/58
4	1 A	2e (0.75)	ZnCl ₂ (1.1)	3Ae	89	25/75
5	1 A	2f(0.5)	ZnCl ₂ (1.1)	3Af	89	37/63
6	1 A	2g(0.5)	$ZnCl2-AgClO4 (1.1-2.2)$	3Ag	100	66/34
7	1 A	2g (0.75)	ZnCl ₂ -AgClO ₄ (0.2-0.4)	3Ag	86	66/34
8	1 B	2a(1.2)	ZnCl ₂ (1.2)	3 _{Ba}	83	51/49
9	1 B	2b(1.2)	ZnCl ₂ (1.2)	3Bb	83	40/60
10	1 B	2g(0.75)	ZnCl ₂ -AgClO ₄ (1.2-2.4)	3Bg	76	α only
11	1 C	2a(1.2)	ZnCl ₂ (1.1)	3Ca	70	26/74
12	1 C	2b(1.2)	ZnCl ₂ (1.1)	3 _{cb}	77	18/82

Table 6. Synthesis of various glycosides by the phosphite methodologya

 a Reaction conditions: MS 4A, CH₂Cl₂, r.t., 20 min.

In connection with determining the absolute configuration of $4-\alpha$ -D-glucopyranosyl-myo-inositol, glycosylation of 1,3,5,6-tetra-O-benzoyl-myo-inositol was necessary.¹³ For this purpose, 2,3,4,6-tetra-O-benzyl-Dglucopyranosyl fluoride 4. bromide, and imidate as well as phosphite **1A as** glycosyl donors were examined and in particular, combination of the phosphite derivative **1A** with ZnCI2-AgClO4 or MS-TfOH and fluoride 414 with trifluoromethanesulfonic anhydride $(Tf_2O)^{15}$ was found to be equally effective (Table 7).

 a Et₂O in place of CH₂Cl₂.

As mentioned already, at the stage of almost completion of the present investigation, Schmidt⁶ and Wong⁷ groups reported the similar glycosylation for an efficient synthesis of sialoglycoside where TMSOTf was employed

as a promoter and diethyl⁶ and dibenzyl⁷ esters used as phosphites, respectively. We compared then their Lewis acid with our ZnC12-AgClO4 and NIS-TfOH in the phosphite-based glycosylation. According to their reported procedures in which excess of the alcohol component was used, the corresponding glycosides were. obtained in slightly lower yields than our procedure using excess of the phosphite as shown already in the cases using glycosyl phosphites. The reaction of 1A with 38-cholestanol (2d) in the presence of the silvl catalyst in CH₂Cl₂ proceeded faster than that using the zinc catalyst to afford the glycoside 3Ad in yield and anomeric ratio comparable to those in the latter case. Sialylation of alcohols using dimethyl phosphite 1D as the glycosyl donor in the presence of the silyl and zinc catalyst proceeded smoothly in both cases (Table 8). Glycosylation of 3β -cholestanol and (+)-menthol in acetonitrile gave α -anomers predominantly while in dichloromethane β -anomers predominated. In the case of 3phenylpropanol in the presence of TMSOTf or NIS-TfOH α -sialoside was the major product in both solvents. Employment of ZnCl2-AgClO4 in acetonitrile generally gave poor results presumably because depression of the

catalytic activity of the zinc catalyst resulting from coordination of the solvent to the Zn^{2+} . Formation of the 2,3-dehydro derivative 5¹⁶ has been a serious problem in the sialylation. In the phosphite-based glycosylation, such an undesirable product was suppressed by adding a catalyst at -42 'C and then conducting the reaction at the temperature shown in Table 8 while initiation of

Table 8. Comparison of promoters in the reaction of 1D with 2.

a Based on **1D. b** The catalyst was added at -42 'C and then the mixture was stirred at the temperature shown in each experiment.

the reaction at a higher temperature yielded a some extent of 5. It should be noted that, when sialylation of 3gcholestanol using TMSOTf was carried out several times variable amounts of theO-silylated cholestanol were isolated and yields of the sialoglycoside sometimes were reduced. The relationship between *reaction* conditions and silyl ether formation is now unclear.

In conclusion, the phosphite is quite useful as a glycosyl donor and the present glycosylation using ZnCl₂, ZnCl₂-AgClO₄, or NIS-TfOH is promising. The rather weak Lewis acid, ZnCl₂ realizes a mild glycosylation. The following facts also prove usefulness of the phosphite-based glycosylation. Schmidt⁶ and Wong⁷ have showed that sialylation using sialyl phosphites affords the sialosides in good yields which are higher than or comparable to that from other known methods. Furthermore, Corey and Wu very recently reported that, while a variety of known glycosylation methodologies and also the phosphite procedure using TMSOTf as a catalyst reported by Schmidt and Wong's groups failed, the present combination of 1-glycosyl phosphite, 1A and the ZnCl₂-AgClO4 catalyst was successfully utilized in the synthesis of paeoniflorin to accomplish glycosylation of sterically hindered alcohol. 17

Experimental

All the melting points were uncorrected. NMR spectra $({}^{1}H, {}^{13}C, {}^{13}H)$ were recorded on a JEOL JNM-GSX270 (270 MHz for ¹H). When CDCl₃ was used in NMR, TMS (δ =0.0) was used for proton spectra and the signal of the solvent (δ =77.0) for carbon spectra as references. In the case of ³¹P NMR, 85% H₃PO₄ (δ =0.0) was used as an external standard and positive chemical shifts are downfield from it. ^{13}C and ^{31}P NMRs were all taken under ¹H-decoupled conditions. IR spectra were recorded on a Hitachi EPI-G3. Elemental analyses were performed on a Perkin-Elmer 240C. Flash chromatography was utilized for column chromatography by using Wako Pure Chemical Industries, silica gel, Wakogel C-300. Anhydrous reaction atmosphere was achieved by nitrogen gas. Anhydrous solvents used here were prepared in a usual manner. Extracts obtained after work-up were dried over $MgSO₄$ or Na₂SO₄. The anomeric ratio of glycosylation products 3A, 3B, and 3C were determined by ¹H NMR $(13C)$ NMR was utilized in some cases.) and HPLC analyses: System 1=Super Micro Bead Silica GelTM (Fuji-Davison Chemical Ltd.), AcOEt-C6H14 1:5; System 2=Super Micro Bead Silica GelTM, AcOEt-C6H14 1:10; System 3=Wakosil™ (Wako Pure Chemical Industries Ltd.), CH3CN-H2O 9:1. The ratio of sialoglycosides 3D were determined by integral ratio of equatorial H₃ in the ¹H NMR spectrum.^{7b}

Dimethyl N,N-diethylphosphoramidite. 18 To a solution of MeOH (17.1 ml, 421 mmol) and triethylamine (80 ml. 574 mmol) in ethyl ether (150 ml) cooled by a Dry-Ice-acetone bath was added dropwise below 0 ^oC an ethyl ether (80 ml) solution of N,N-diethylphosphoramidous dichloride¹⁹ (33.3 g, 191 mmol) and the mixture was stirred overnight. After addition of aq. 5% NaHCO3 solution and ethyl ether, the organic phase was washed with aq. 5% NaHCG3 (twice) and brine, dried, filtered. The residue was subjected to distillation under reduced pressure to give the amidite (20 g, 63% yield). bp 65-66 \degree C/40 mmHg; ¹H NMR (CDCl₃) δ –1.07 (6 H, t, $J=7.02$ Hz), 3.07 (4 H, dq. $J=9.46$ and 7.02 Hz), 3.41 (6 H, d, $J=12.51$ Hz); $31P$ NMR (CDCl3) $\delta=150.64$. Anal. Calc. for C₆H₁₆NO₂P: C, 43.63; H, 9.76; N, 8.48%. Found: C, 44.02; H, 9.75; N, 8.38%.

Synthesis of glycosyl phosphites.

2,3,4,6-Tetra-O-benzyl-D-glucopyranosyl dimethyl phosphite (1A). A mixture of 2,3,4,6-tetra-O-benzyl- α -D-glucopyranose (31.3 mg, 58 µmol), 1H-tetrazole (6.1 mg, 87 µmol), and dimethyl N,Ndiethylphosphoramidite (12.4 μ l, 75 μ mol) in CH₂Cl₂ (1 ml) was stirred at room temperature for 1 h and ethyl ether and H₂O were added. The organic layer was washed with H₂O and brine, dried (Na₂SO₄), and concentrated to afford chromatographically pure phosphite (36.6 mg, 100% yield) which was employed for giycosyiation without further purification. ¹H NMR (for α -anomer, CDCl₃) δ =3.53 (3 H, d, J=10.68 Hz), 3.55 (3 H, d, J=10.07 Hz), 3.47-3.78 (5 H, complex), 3.99 (1 H, J=9.5 Hz), 4.70 (2 H, s), 4.46 and 4.60 (2 H, ABq, J=12.0 Hz), 4.48 and 4.96 (2 H, ABq, J=11.0 Hz), 4.81 and 4.84 (2 H, ABq, J=10.7 Hz), 5.54 (1 H, dd, J=8.2 and 3.4 Hz), and 7.10-7.46 (20 H, complex); $31P NMR$ (CDCl3) δ -141.13 (α) and 142.18 (β). Integral ratio (α/β) of these peaks was 83 : 17.

In a similar manner, other glycosyl phosphites were prepared quantitatively and used without purification.

 $2,3,4,6$ -Tetra-O-benzyl-D-mannopyranosyl dimethyl phosphite (1B). ¹H NMR (for α -anomer, CDC13) 6-3.40 (3 H, d. J=lO.5 Hz), 3.44 (3 H, d, J=10.5 Hz), 3.40-4.10 (6 H, complex), 4.47-5.00 (8 H, complex), 5.53 (1 H, dd, J=7.9 and 1.8 Hz), and 7.12-7.56 (20 H, complex); $31P$ NMR (CDCl3) δ =140.98 (α) and 141.20 (β); α/β 86 : 14.

 $2,3,4,6$ -Tetra-O-benzyl-D-galactopyranosyl dimethyl phosphite $(1C)$. ¹H NMR (for α -anomer, CDCl3) δ =3.40-3.66 (9 H, complex), 3.96 (1 H, dd, J=10.1 and 2.6 Hz), 4.10 (1 H, dd, J=10.1 and 3.4 Hz), 4.17 (1 H, t, J=6.4 Hz), 4.39-4.99 (8 H, complex), 5.60 (1 H, dd, J=8.6 and 3.4 Hz), and 7.22-7.24 (20 H, complex); $31P$ NMR (CDCl3) δ =141.41 (α) and 141.66 (β); α/β 72 : 28.

Methyl 5-acetamido-4,7,8,9-tetra-O-acetyi-2-(dimethyl phosphityi)-3,5-dideoxy-D-glycero-D-galacto-2-nonulopyranosonate (1D): The procedure was essentially similar to that for glucopyranosyl phosphite **1A** except for the reaction time (1.5 h) and quantities of the amidite and lH-tetrazole (1.5 to 2.3 molar equivalent each). ¹H NMR (CDCl3) δ =1.89 (3 H, s, Ac for β), 2.03 (6 H, s, Ac for β), 2.08 (3 H, s, Ac for β). 2.14 (3 H, s, AC for fi), 2.04 (6 H, s, AC for a), 2.07 (3 H, s, AC for a), 2.12 (3 H, s, AC for a), 2.13 (3 H, s, AC for α), 1.89-2.14 (1 H x 2, complex, H₃-ax), 2.48 (1 H, dd, J=13.1 and 4.9 Hz, H₃-eq for β), 2.71 (1 H, dd, $J=13.1$ and 4.9 Hz, H3-eq for α), 3.57 (3 H, d, $J=10.0$ Hz, POCH3 for β), 3.59 (3 H, d, $J=10.7$ Hz, POCH3 for β), 3.52 (3 H, d, J=10.4 Hz, POCH3 for α), 3.55 (3 H, d, J=9.3 Hz, POCH3 for α), 3.83 (3 H x 2, s x 2, CO₂CH₃), 4.17-4.21 (2 H x 2, complex, H₅ and Hg), 4.28 (1 H, dd, J=10.4 and 2.1 Hz, H₆ for β), 4.38 (1 H, dd, $J=10.4$ and 2.1 Hz, H₆ for α), 4.63 (1 H x 2, dd, $J=12.5$ and 2.4 Hz, Hg), 5.16 (1 H x 2, m, Hg), 5.30 (1 H x 2, m, H4), 5.42 (1 H x 2, dd, J=3.7 and 2.1 Hz, H7), and 5.46 (1 H x 2, d, J=10.1 Hz, NH); ³¹P NMR (CDCl₃) δ =137.15 (α) and 138.85 (β); α/β 20 : 80.

2,3,4,6-Tetra-O-benzyl-D-glucopyranosyl diethyl phosphite. ¹H NMR (for α -anomer, CDCl3) δ = 1.23 (6 H, t, J=7.7 Hz), 3.58-4.04 (10 H, complex), 4.46 and 4.60 (2 H, ABq, J=12.2 Hz), 4.48 and 4.84 (2 H, ABq, $J=10.7$ Hz), 4.81 and 4.95 (2 H, ABq, $J=11.0$ Hz), 4.70 (2 H, s), 5.57 (1 H, dd, $J=8.5$ and 3.4 Hz), and 7.20-7.44 (20 H, complex); $3^{1}P$ NMR (CDCl3) δ =140.38 (α) and 141.03 (β); α/β 77:23.

2,3,4,6-Tetra-O-benzyl-D-glucopyranosyl o-xylylene phosphite was used without any characterization except for TLC analysis $[Rf]$ (ethyl acetate-hexane 1:2) 0.81].

2,3,4,6-Tetra-O-benzyl-D-glucopyranosyl diphenylphosphinite. A mixture of 2,3,4,6-tetra-Obenzyl- α -D-glucopyranose (49 mg, 91 µmol), ethyldiisopropylamine (17.4 µl, 100 µmol), and diphenylphosphinous chloride (18.4 μ l, 100 μ mol) in CH₂Cl₂ (1.5 ml) was stirred at room temperature for 1 h and ethyl ether and H20 were added. The organic layer was washed with H20 and brine, dried, and concentrated. The residue was subjected to column chromatography on silica gel (ethyl acetate/hexane, 1:15 involving 1% triethylamine) to afford the phosphinite (26.2 mg, 40% yield). ¹H NMR (for α -anomer, CDCl3) δ =3.54 (1 H, ddd. $J=9.2$, 7.0, and 2.8 Hz), 3.61-3.73 (4 H, complex), 3.61-3.73 (1 H, m), 3.76 (1 H, ddd, $J=11.0$, 7.6, and 3.4 Hz), 4.02 (1 H, t, J=9.2 Hz), 4.43-4.99 (8 H, complex), 5.19 (1 H, d, J=8.2 Hz), 6.06 (1 H, d, J=4.0 Hz), and 6.94-7.60 (30 H, complex); $31P$ NMR (CDCl3) δ =118.22 and 118.24. The anomeric ratio was obtained by the integration of anomeric protons; α/β 1:1.

Giycosylation procedure

Representative glycosylation procedure: Synthesis of 3-phenylpropyl 2,3,4,6-tetra-Obenzyl-D-glucopyranoside. To a solution of 2,3,4,6-tetra-O-benzyl-D-glucopyranosyl dimethyl phosphite (43.7 mg, 69 µmol) and 3-phenylpropanol (9.3 µl, 69 µmol) in CH₂Cl₂ (1 ml) with powdered molecular sieves 4A (60 mg) was added ZnCl₂ (9.4 mg, 69 μ mol) and AgClO₄ (28.6 mg, 140 μ mol), and the mixture was stirred at room temperature for 20 min. After addition of H20, the mixture was filtered through a pad of Celite and washed with AcOEt. The filtrate was washed with aq NaHCO3 and brine, dried, and concentrated. The residue was chromatographed on silica gel (AcOEt-C₆H₁₄ 1:2) to give the corresponding glucoside **3Aa** (41.7 mg, 92% yield, a/g 5248). The anomeric ratio of **3Aa was** analyzed by HPLC (Fuji Davison Chemical Ltd., Super Micro Bead Silica Gel, $AcOEt-C₆H₁₄ 1:5, 0.5 ml/min$.

In the cases of sialoglycoside synthesis, the activators were added exceptionally at -42 °C to prevent the formation of the 2,3-dehydro derivative 5.

- **3Aa** ¹H NMR (CDC13) δ -1.98 (2 H, hex, J=8.2 Hz), 2.71 (2 H, m), 3.46 (2 H, t, J=8.2 Hz), 3.40-3.76 (5 H, complex), 3.98 (1 H, dt, J=9.38 and 6.58 Hz), 4.39 (1 H, J=7.6 Hz, H₁ for β), 4.53 and 4.60 (2 H for β , ABq, $J=12.2$ Hz), 4.52 and 4.78 (2 H for β , ABq, $J=10.7$ Hz), 4.74 and 4.92 (2 H for β , ABq, $J=11.0$ Hz), 4.81 and 4.98 (2 H for β, ABq, J=11.0 Hz), 7.10-7.26 (25 H, complex). *Anal.* Calc. for C₄₃H₄₆O₆: C, 78.39; H, 7.04%. Found: C, 78.68; H, 7.03%. System 1 was used for HPLC analysis.
- **3Ab** ¹H NMR (CDCl₃) δ =1.15-2.10 (10 H, m), 3.60 (1 H, dd, J=9.5 and 4.0 Hz, H₂ for α), 3.59 (1 H, m), 3.68 (1 H, t, J=9.5 Hz, H₄ for α), 3.66 (1 H, m, H₆ for α), 3.78 (1 H, dd, J=10.4 and 3.7 Hz, H_{6a} for α), 3.93 (1 H, m, H₅ for α), 4.05 (1 H, t, J=9.5 Hz, H₃ for α), 4.50 and 4.66 (2 H, ABq, J=12.0 Hz, PhCH₂ for α), 4.52 and 4.87 (2 H, ABq, J=10.7 Hz, PhCH₂ for α), 4.69 and 4.79 (2 H, ABq, J=12.0 Hz, PhCH₂ for α), 4.85 and 5.04 (2 H, ABq, J=12.0 Hz, PhCH₂ for α), 5.00 (1 H, d, J=4.0 Hz, H₁ for *a),* 7.13-7.44 (20 H, complex). *Anal.* Calc. for C4OH4606: C, 77.14; H, 7.44%. Found: C, 76.89; H, 7.52%. System 1 for HPLC.
- 3Ac ¹H NMR (CDCl3) δ =1.26 (9 H, s, t-Bu for α), 1.32 (9 H, s, t-Bu for β), 3.41 (1 H, dd, J=9.5 and 7.9 Hz, H₂ for β), 3.43 (1 H, m, H₅ for β), 3.51 (1 H, dd, J=9.5 and 3.7 Hz, H₂ for α), 3.52 (1 H, t, J=9.5 Hz, H₃ for β), 3.58-3.68 (4 H, complex), 3.69 (1 H, dd, J=10.4 and 2.4 Hz, H₆ for α), 3.74 (1 H, dd, J=10.4 and 4.3 Hz, H_{6a} for α), 3.96 (1 H, ddd, J=9.5, 4.3, and 2.4 Hz, H5 for α), 3.99 (1 H, t, J=9.5 Hz, H3 for α), 4.56 (1 H, d, J=7.9 Hz, H₁ for β), 5.12 (1 H, d, J=3.7 Hz, H₁ for α), 4.40-4.84 (8 H, complex), 7.18-7.35 (20 H, complex). *Anal.* Calc. for C₃₈H₄₄O₆: C, 76.48; H, 7.43%. Found: C, 76.19; H, 7.43%. System 2 for HPLC.
- **3Ad** ¹H NMR (for β anomer, CDCl₃) δ =0.56-2.05 (46 H, cholestanyi protons), 3.46 (1 H, t. J=8.9 Hz, H₃), 3.46 (1 H, m, Hg), 3.56 (1 H, t, J=8.9 Hz, H4), 3.64 (1 H. dd, J=8.9 and 5.2 Hz, H2), 3.66 (1 H. dd, $J=10.7$ and 6.4 Hz, H₆), 3.65 (1 H, m), 3.77 (1 H, m), 4.60 (1 H, d, $J=5.2$ Hz, H₁), 4.52-5.01 (8 H, complex), 7.11-7.40 (20 H, complex). *Anal.* Calc. for C₆₁H₈₂O₆: C, 80.40; H, 9.07%. Found: C, 80.41; H, 9.09%. System 2 for HPLC.
- 3Ae ¹H NMR (for β anomer, CDCl₃) δ =0.65-2.50 (42 H, cholesteryl protons), 3.45 (1 H, t, J=8.2 Hz, H3), 3.56 (1 H, t, J=8.2 Hz, Hq). 3.45 (1 H. m, Hg), 3.61 (1 H, m, cholesteryl H3), 3.64 (1 H, dd, J=8.2 and 6.7 Hz, H2). 3.65 (1 H, dd, *J=8.9* and 4.9 Hz, H6), 3.74 (1 H, m, H6a). 4.59 (1 H, d, J=6.7 Hz, Hi), 4.49-5.01 (8 H, complex), 5.29 (1 H, m, cholesteryl H₆ for α), 5.36 (1 H, m, cholesteryl H₆ for β), 7.12-7.40 (20 H, complex). *Anal.* Calc. for C₆₁H₈₀O₆: C, 80.57; H, 8.87%. Found: C, 80.17; H, 8.94%. System 1 for HPLC.
- 3Af 1H NMR (CDCl3) 6-1.23-1.76 (20 H, complex), 3.35-3.68 (6 H, complex), 3.59 (1 H, m), 3.84 (1 H, dd, J=l2.0 and 7.4 Hz), 3.90 (1 H, dd, J=l2.0 and 7.4 Hz), 3.99 (1 H, t, *J=9.8* Hz), 4.17-5.03 (15 H, complex), 5.59 (1 H, d, J=3.7 Hz, H₁ for a), 7.01-7.38 (25 H, complex). *Anal.* Calc. for C₅₉H₆₈O₁₁: C, 74.35; H, 7.19%. Found: C, 74.24; H. 7.29%. System 3 for HPLC.
- 3Ag ¹H NMR (CDCl3) δ =3.36 (3 H, s, OMe for β), 3.37 (3 H, s, OMe for α), 3.30-3.52 (1 H x 2, complex), 3.43-3.52 (1 H x 2, complex), 3.52-3.75 (5 H x 2, complex), 3.78-3.87 (2 H x 2, complex), 3.89 (1 H, t, *J*=9.1 Hz, H₃¹ for a), 3.93 (1 H, t, *J*=9.1 Hz, H₃¹ for β), 4.02 (1 H, t, *J*=9.1 Hz, H₃ for a), 4.07 (1 H, t, $J=9.1$ Hz, H₃ for β), 4.24-5.12 (15 H, complex), 5.67 (1 H, d, J=3.7 Hz, H₁ for α), 7.07-7.42 (35 H, complex). *Anal.* Calc. for C₆₂H₆₆O₁₁: C, 75.43; H, 6.74%. Found: C, 75.08; H, 6.75%. System 3 for HPLC.
- **3Ba** ¹H NMR (CDCl3) δ -1.80 (2 H, m), 2.60 (2 H, m), 3.35 (1 H, m, H5), 3.63-3.80 (5 H, complex), 3.90 (1 H, dd, *J=9.3* and 2.9 Hz, H6a). 3.95 (1 H, t, *J=9.3* Hz, H3), 4.38 (1 H, s, Hl for p).4.50 and 4.87 (2 H, ABq, $J=10.8$ Hz, PhCH₂), 4.53 and 4.63 (2 H, ABq, $J=12.2$ Hz, PhCH₂), 4.64 (2 H, s, PhCH₂), 4.70 and 4.76 (2 H, ABq, J=11.4 Hz, PhCH₂), 4.87 (1 H, d, J=1.9 Hz, H₁ for α), 7.09-7.40 (25 H, complex). *Anal.* Calc. for C43H4606: C, 78.39; H, 7.04%. Found: C, 78.04; H, 7.18%. System 2 for HPLC.
- 3Bb lH NMR (CDC13) 6=1.12-2&t (10 H, m), 3.43 (1 H, m, H5), 3.49 (1 H, dd, *J=9.2* and 3.1 Hz, H6 for β), 3.57 (1H, m, H₁), 3.67-3.88 (4 H, complex), 3.92 (1 H, dd, *J*=8.9 and 4.9 Hz, H₆ for α), 3.98 (1 H, t, $J=8.9$ Hz, H₄ for α), 4.60 (1 H, d, $J=1.8$ Hz, H₁ for β), 4.99 (1 H, d, $J=1.8$ Hz, H₁ for α), 4.39-5.04 (8 H, complex), 7.13-7.51 (20 H, complex); ${}^{13}C$ NMR (CDCl3, partial) δ -95.68 (C1 for α), 99.49 (C1 for 8).12 *Anal. Cak.* for C40H4606: C, 77.14; H, 7.44%. Found: C, 77.24; H, 7.52%. System 3 for HPLC.
- **3 Bg** ^IH NMR (CDC(3) δ =3.39 (3 H, s), 3.53 (1 H, dd, J=9.5 and 3.7 Hz), 3.54-3.80 (9 H, complex), 3.85 (1 H, dd, *J=9.2* and 3.1 Hz), 3.97 (1 H, t, *J=9.5* Hz), 4.20 and 4.30 (2 H. ABq, J=l2.2 Hz), 4.40-4.70 (10 H, complex), 5.08 and 4.84 (2 H, ABq, J=11.9 Hz), 4.61 (1 H, d, J=3.7 Hz), 5.29 (1 H, d, J=2.1 Hz), 7.10-7.37 (35 H, complex); ¹³C NMR (CDCl3, partial) δ -97.70 (C₁^t for α -glucosyl), 100.50 (C₁ for α mannosyl). *Anal*. Calc. for C₆₂H₆₆O₁₁: C, 75.43; H, 6.74%. Found: C, 75.17; H, 6.78%. System 2 and 3 for HPLC.
- 3Ca ¹H NMR (CDCl3) δ = 2.00 (2 H, m), 2.73 (2 H, m), 3.45-3.74 (5 H, complex), 3.87 (1 H, dd, J=9.6 and 7.9 Hz), 3.91 (1 H, t, J=3.1 Hz), 4.00 (1 H. ddd, J=9.2, 6.1, and 3.1 Hz), 4.38 (1 H, d, *J=7.9* Hz), 4.43 and 4.48 (2 H, ABq, J=11.6 Hz), 4.65 and 4.97 (2 H, ABq, J=11.6 Hz), 4.73 and 4.78 (2 H, ABq, J=11.9 HZ), 4.82 and 4.90 (2 H, ABq, *J=ll.O* Hz), 7.14-7.42 (25 H, complex). *Anal.* Calc. for C43H4606: C,

78.39; H, 7.04%. Found: C, 78.25; H, 7.14%. The anomeric ratio was determined by HPLC anaysis (System 2) and the integral ratio of anomeric protons (δ =4.23, J=7.32 Hz for β anomer; δ =4.85, J=2.75 Hz for α anomer) in the ¹H NMR spectrum of the hydrogenolytic debenzylation product.

- **3Cb** 1H NMR (CDC13) 8-1.18-2.06 (10 H, complex), 3.53 (1 H, dd, J=9.8 and 3.1 Hz), 3.54-3.61 (2 H, complex), 3.70 (1 H, m), 3.82 (1 H. dd. J=9.8 and 7.6 Hz), 3.89 (1 H, m), 4.07 (1 H, m), 4.48 (1 H, d. $J=7.6$ Hz), 4.42 and 4.48 (2 H, ABq, $J=11.9$ Hz), 4.64 and 4.95 (2 H, ABq, $J=11.9$ Hz), 4.78 and 4.91 (2 H, ABq, J=11.9 Hz), 4.77 and 4.99 (2 H, ABq, J=11.0 Hz), 7.22-7.45 (20 H, complex); ¹³C NMR (CDCl₃, partial) δ -95.45 (C₁ for α), 102.12 (C₁ for β). *Anal.* Calc. for C₄₀H₄₆O₆: C, 77.14; H, 7.44%. Found: C, 76.87; H, 7.58%. System 2 for HPLC.
- **3Da** ¹H-NMR (CDCl₃) δ =1.8-2.17 (3 H x 2, complex, H_{3ax} and H₂¹ for α and β), 1.89, 2.04, 2.05, 2.14, and 2.15 (3 H x 5, sx5. AC for a), 1.88, 2.02, 2.03. 2.06, and 2.14 (3 H x 5, sx5, AC for @). 2.47 (1 H, dd, J=12.82 and 4.88 Hz, H_{3eq} for β), 2.61 (1 H, dd, J=12.81 and 4.57 Hz, H_{3eq} for α), 2.62-2.78 (2 H x 2, complex, CH₂Ph for α and β) 3.22 (1 H, dt, *J*=9.46 and 6.40 Hz, H₁' for α), 3.37 (1 H, dt, *J*=9.50 and 6.40 Hz, Hl* for fi) 3.53 (1 H, dt, *J=9.50* and 6.40 Hz, Hll for B), 3.75 (3 H, s, OCH3 for a), 3.77 (3 H, s, OCH3 for β), 3.70-3.88 (2 H, complex, H₁' for α), 4.03-4.15 (2 H for α and 3 H for β , complex), 4.30 (1 H, dd, $J=12.51$ and 2.44 Hz, Hg for α), 4.78-4.90 (2 H, complex, H₄ for α and Hg for β), 5.17 (1 H, m, H₄ for β), 5.28-5.40 (3 H x 2, complex, H₇ 8 and NH for α and β), 7.15-7.33 (5 H x 2, complex, aromatic H for a and 8). *Anal. Calc.* for C2gH3gOl3N: C, 57.14, H, 6.45; N, 2.30%. Found: C, 56.79; H, 6.46; N, 2.46%.
- **3Dd** ¹H NMR (CDCl₃) δ -0.58-2.17 (47 H, complex, steroidal protons and H_{3ax}), 1.87, 2.02, 2.06, 2.08, 2.13 $(3 H x 5, s x 5)$, 2.49 (1 H, dd, J=13.1 and 4.9 Hz, H_{3eq} for β), 2.56 (1 H, dd, J=13.1 and 4.9 Hz, H_{3eq} for α), 3.68 (1 H, m), 3.78 (3 H, s, CH₃O for β), 3.81 (3 H, s, CH₃O for α), 4.05-4.19 (2 H, complex), 4.15 (1 H, dd, J=12.5 and 8.2 Hz), 4.80 (1 H, m, H₄ for α), 4.95 (1 H, dd, J=12.5 and 2.1 Hz), 5.11 (1 H, m), 5.27 (1 H, m, H₄ for β), 5.38-5.50 (2 H, complex). *Anal.* Calc. for C₄₇H₇₅NO₁₃: C, 65.48; H, 8.77; N, 1.62%. Found: C, 65.56; H, 9.00; N, 1.67%.
- 3Di ¹H NMR (CDCl3) δ =0.70 (3 H for β , d, J=6.7 Hz), 0.81(3 H for α , d, J=7.0 Hz), 0.85 (3 H for α , d, $J=6.4$ Hz), 0.90 (3 H x 2 for α and β , d, $J=6.7$ Hz x 2), 0.92 (3 H for β , d, $J=6.4$ Hz), 0.79-1.65 (16 H for α and β , complex), 1.90, 2.03, 2.04, 2.11, and 2.16 (3 H x 5 for α , s x 5), 1.86, 2.01, 2.04, 2.07, and 2.14 (3 H x 5 for β , s x 5), 1.8-2.1 (2 H for α and β , complex), 2.50 (1 H, dd, J=12.8 and 4.6 Hz, H_{3eq} for β), 2.60 (1 H, dd, J=12.8 and 4.6 Hz, H_{3eq} for α), 3.25 (1 H for β , dt, J=10.4 and 4.3 Hz), 3.81 (6 H for α and β , s), 4.11 (1 H for β , t, J=10.4 Hz), 4.19 (1 H for β , dd, J=10.4 and 2.4 Hz), 4.23 (1 H for β , dd, J=12.5 and 9.2 Hz), 4.0-4.3 (6 H for α and β , complex), 4.83 (1 H for α , m), 4.97 (1 H for β , dd, $J=12.5$ and 2.1 Hz), 5.17 (1 H for β , br), 5.24 (1 H for β , m), 5.41 (1 H for β , m), 5.22-5.52 (5 H, complex, H₄, H₇, H₈, and NH for α and NH for β). *Anal.* Calc. for C₃₀H₄₇NO₁₃: C, 57.22; H, 7.43; N, 2.50%. Found: C, 57.32; H, 7.52; N, 2.22%.

Acknowledgment: This work was financially supported by CIBA-GEIGI Foundation (Japan) for the Promotion of Science (Y.W.).

References and Notes

- 1. Watanabe, Y .; Maehara, S.; Ozaki, S. *J. Chem. Sot., Perkin Trans. I* 1992, 1879-80.
- 2. Watanabe, Y.; Komoda, Y.; Ozaki, S. *Tetrahedron Lett.* 1992.33. 1313-16. Watanabe, Y.; Inada, E.; Jinno, M.; Ozaki, S. *ibid. 1993, 34.497-500.*
- *3.* Murakata, C.; Ogawa, T. *Tetrahedron Lett.* 1991,32,671-674. Murakata, C.; Ogawa, T. *Carbohydr. Res. 1992,235,* 95114. Udodong, U. E.; Madsen, R.; Roberts, C.; Fraser-Reid, B. *J. Am.* Chem. Sec. 1993, *115,7886-7887.*
- *4.* For the latest review, see: Toshima K.; Tatsuta, K. *Chem. Rev.* 1993.93, 1503-31.
- 5. Michalska, M.; Borowiecka, J. *J. Carbohydr. Chem. 1983, 2,* 99-103. Inazu, T.; Hosokawa, H.; Satoh, Y. *Chem. L.ett. 1985, 297-300.* Bielawska H.; Michalska. M. *J. Carbohydr. Gem. 1986,5,445-458.* Inazu, T.; Yamanoi, T. *Chem. Lett.* 1989. 69-72. Hashimoto. S.; Honda, T.; Ikegami, S. *J. Chem. Sot., Chem. Commun. 1989, 685687.* Yamanoi, T.; Inazu, T. *Chem. Lett.* 1990, 849-852. Hashimoto, S.; Honda, T.; Ikegami, S. *Heterocycles* 1990, 30, 775-778. Hashimoto, S.; Honda, T.; Ikegami, S. *Tetrahedron Z&t.* 1990, 31, 4769-4772. Bielawska, H.; Michalska, M. J. Carbohydr. Chem. 1991, 10, 107-112. Hashimoto, S.; Honda, T.; Ikegami, S. *Tetrahedron Lett*. **1991**, 32, 1653-1654. Hashimoto, S.; Yanagiya, Y .; Honda, T.; Harada, H.; Ikegami, S. *ibid. 1992, 33, 31X3-3526.* Laupichler, L.; Sajus, H.; Thiem, J. *Synthesis 1992,* 1133-1136. Yamanoi, T.; Nakamura, K.; Takeyama. H.; Yanagihara, K.; Inazu, T. *Chem. Lett. 1993, 343-346.* Yamanoi, T.; Nakamura, K.; Sada, S.; Goto, M.; Furusawa, Y .; Takano, M.; Fujioka, A.; Yanagihara, K.; Satoh, Y.; Hosokawa, H.; Inazu, T. *Bull. Chem. Sot. Jpn. 1993, 66, 2617-2622.*
- *6.* Martin, T.J.; Schmidt, R.R. *Tetrahedron L&t. 1992,33,6123-6126.*
- *7.* (a) Kondo, H.: Ichikawa, Y.; Wong, C.-H. *J. Am. Chem. Sot. 1992, 114, 8748-8750.* (b) Sim, M. M.; Kondo, H.; Wong, C.-H. *ibid. 1993, 115, 2260-2267.*
- *8.* Watanabe, Y .; Nakamoto, C.; Ozaki, S. *Synfett 1993,* 115-l 16.
- 9. Beaucage. S. L.; Iyer, R. P. *Tetrahedron 1992.48, 2223-2311.* Beaucage. S. L.; lyer, R. P. *ibid. 1993, 49, 19X5-1963.* Beaucage. S. L.; Iyer, R. P. *ibid. 1993,49, 6123-6194.* Beaucage. S. L.; Iyer, R. P. *ibid. 1993.49, 10441-10488.*
- 10. Mootoo, D. R.; Konradsson, P.; Fraser-Ried, B. *J. Am. Chem. Soc.* 1989, 111, 8540-8542.
- 11. Hashimoto, S.; Hayashi, M.; Noyori, R. *Tetrahedron Lett. 1984,25,* 1379-1382. Ratcliffe, A.; Fraser-Reid, B. *J. Chem. Sot., Perkin Trans. 1* 1990, 747-750. Schmidt, R. R.; Behrendt, M.; Toepfer, A. *Synlett* 1990,694-6%. Vankar, Y. D.; Vankar, P. S.; Behrendt, M.; Schmidt, R. R. *Tetrahedron* 1991,47, 9985- 9992. Sinaji, P. *Pure Appl. Chem.* 1991, 63, 519-528. Wessel, H. P.; Englert, G.; Stangier, P. *Helv. Chim. Acta* 1991, 74, 682-696.
- 12. Suzuki, K.; Maeta, H.; Suzuki, T.; Matsumoto, T. *Tetrahedron Lett. 1989,30,6879-6862.*
- *13.* Watanabe, Y .; Nakamoto, C.; Ozaki, S.; Sato, M.; Koizumi, K. *J. Carbohydr. Chem. 1993,12,685-692.*
- *14.* Mukaiyama, T.: Hashimoto, Y.; Shoda, S. *Chem. Lett. 1983, 935-938.*
- 15. Wessel, H. P. *Tetrahedron Lett.* 1990, 31, 6863-6866. Wessel, H. P.; Ruiz, N.; *J. Carbohydr. Chem.* lPPl,lO, 901-910. Dobarro-Rodriguez, A.; Trumtel, M.; Wessel, H. P. *J. Carbohydr.* Chem. 1992, II, 255-263.
- 16. Okamoto, K.; Kondo, T.; Goto, T. *Bull. Chem. Soc. Jpn.* 1987, 60, 631-636.
- 17. Corey, E. J.; Wu, Y.-J. *J. Am. Chem. Soc.* 1993, 115, 8871-8872.
- 18. Slightly different procedures for the synthesis of the similar type of amidites are available in the following literatures: Uhlmann, E.; Engels, J. *Tetrahedron Left. 1986, 27, 1023-1026.* Pederson, R. L.; Esker, J.; Wang. C.-H. *Tetrahedron, 1991,47. 2643-2648.* Fukase, K.; Kamikawa. T.; Iwai. Y.; Shiba, T.; Rietschel, E. T.; Kusumoto, S. *Bull. Chem. Sot. Jpn. 1991,64, 3267-3273.*
- 19. Issleib, K.; Seidel. W. *Chem. Ber. 1959, 92, 2681-2694.*

(Received in Japan 7 February 1994; *accepted 22 March 1994)*